Národní úložiště šedé literatury Nalezeno 5 záznamů.  Hledání trvalo 0.00 vteřin. 
In Vitro Study of the Effect of Particle Characteristics and Flow Rate on Regional Deposition in Human Airways
Bělka, Miloslav ; Adamec, Vladimír (oponent) ; Farkas, Árpád (oponent) ; Jedelský, Jan (vedoucí práce)
Inhalation of airborne particulate matter can trigger or exacerbate pre–existing lung conditions. On the other hand, inhalation of aerosolized medicaments can be used for treatment of various respiratory or systemic diseases. In both cases, it is essential to comprehend the particle transport and subsequent deposition. The aim of this PhD thesis is to obtain new experimental data on particle deposition and elucidate the effect of particle shape and flow rate on deposition. The deposition of porous and fibrous particles in the realistic replica of human respiratory airways was studied. The porous particles were produced by various methods, such as spray–drying or liquid–liquid interface crystallization. The produced particles were introduced into the replica and the subsequent deposition was detected using spectrophotometry. The fibrous particles were produced by crushing glass wool material. To narrow the fiber size distribution, the resulting fibers were sieved and then classified according to their length using a dielectrophoretic classifier. The fiber deposition inside the replica was detected using phase–contrast microscopy. To speed–up this analysis, an in–house software based on image processing was developed. The results were utilized to calculate deposition characteristics. The deposition efficiency of both particle types increased with increasing Stokes number indicating a significant role of impaction. Comparing their deposition efficiency to that of spherical particles, porous particles exhibited similar deposition efficiencies, however, fibers deposited less efficiently than spherical particles having the same Stokes number. As the boundary conditions were sufficiently described and the replica is available in a digital format, the data can be also employed in validation of numerical simulations.
Numerical model of inhalation
Milanovic, Selena ; Zezulka, František (oponent) ; Sekora, Jiří (vedoucí práce)
The number of animals involved in laboratory testing needs to decrease, according to the latest decrees of the European Union. Furthermore, little is known about the secondary effects of gaseous substances (e.g. deodorants, cleaning sprays) used on a daily basis in every household. Based on these pressing necessities, an analysis of particle transport and deposition has been conducted. The study has been conducted on two levels: on a computational basis (CFD simulations) and on a practical basis. The experimental part of the research is based on the functioning of a lung simulator, the i-Lung. The model can be used as a passive simulator as well as an active one.
Modeling of Airflow Characteristics and Particle Deposition in Human Upper Respiratory Tract Using CFD Simulations
Pospíšil, Milan ; Forjan, Mathias (oponent) ; Paštěka, Richard (vedoucí práce)
The objectives are to analyze the mechanisms of airflow and particle transport in the extrathoracic airways. Understanding these features in greater detail not only helps in the treatment of diseases related to the respiratory tract but also aims to reduce the amount of animal testing. For the evaluation, computational fluid dynamic (CFD) simulations were utilized. ANSYS was used as a leading software to perform a simulation of different inspiratory flow rates. In this work, Large Eddy Simulations (LES) is engaged due to its real-world performance. The geometry of the upper airways is obtained from CT scans, to preserve the topological data of the upper airways. Furthermore, the deposition of inhaled particles of varying diameters 1-10 m was examined, helping us better understand the therapeutic effects of inhaled particles. Two types of inhalations simulations were carried out. First, inhalation through the nose, simulating the inhalation with a nebulizer with airflow rates of 15 l/min and 30 l/min. Second, through mouth simulating inhalation with a dry-powder inhaler with a flow rate of 90 l/min. Simulated results show that most of the particles deposit at the entrance of the nasal or oral cavity. When flow rates of 15 and 30 l/min were compared, it can be seen the higher initial velocity is, the particles of large diameter (6-10 m) are stuck in the nasal cavity and do not appear in the laryngeal region, whereas with low velocity the more particles of 6-10 m can be found in this region. The maximum number of particles leaving the trachea was observed with a flow rate of 15 l/min, accounting for 26 %. As opposed to 90 l/min where only 13 % left the upper respiratory tract. Also, typical pressure drop can be observed in pressure contours describing the larynx region. This was most significant for a flow rate of 90 l/min where the pressure from the oropharynx to subglottis dropped by 490 Pa.
In Vitro Study of the Effect of Particle Characteristics and Flow Rate on Regional Deposition in Human Airways
Bělka, Miloslav ; Adamec, Vladimír (oponent) ; Farkas, Árpád (oponent) ; Jedelský, Jan (vedoucí práce)
Inhalation of airborne particulate matter can trigger or exacerbate pre–existing lung conditions. On the other hand, inhalation of aerosolized medicaments can be used for treatment of various respiratory or systemic diseases. In both cases, it is essential to comprehend the particle transport and subsequent deposition. The aim of this PhD thesis is to obtain new experimental data on particle deposition and elucidate the effect of particle shape and flow rate on deposition. The deposition of porous and fibrous particles in the realistic replica of human respiratory airways was studied. The porous particles were produced by various methods, such as spray–drying or liquid–liquid interface crystallization. The produced particles were introduced into the replica and the subsequent deposition was detected using spectrophotometry. The fibrous particles were produced by crushing glass wool material. To narrow the fiber size distribution, the resulting fibers were sieved and then classified according to their length using a dielectrophoretic classifier. The fiber deposition inside the replica was detected using phase–contrast microscopy. To speed–up this analysis, an in–house software based on image processing was developed. The results were utilized to calculate deposition characteristics. The deposition efficiency of both particle types increased with increasing Stokes number indicating a significant role of impaction. Comparing their deposition efficiency to that of spherical particles, porous particles exhibited similar deposition efficiencies, however, fibers deposited less efficiently than spherical particles having the same Stokes number. As the boundary conditions were sufficiently described and the replica is available in a digital format, the data can be also employed in validation of numerical simulations.
Numerical model of inhalation
Milanovic, Selena ; Zezulka, František (oponent) ; Sekora, Jiří (vedoucí práce)
The number of animals involved in laboratory testing needs to decrease, according to the latest decrees of the European Union. Furthermore, little is known about the secondary effects of gaseous substances (e.g. deodorants, cleaning sprays) used on a daily basis in every household. Based on these pressing necessities, an analysis of particle transport and deposition has been conducted. The study has been conducted on two levels: on a computational basis (CFD simulations) and on a practical basis. The experimental part of the research is based on the functioning of a lung simulator, the i-Lung. The model can be used as a passive simulator as well as an active one.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.